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Abstract A gradient-constrained minimum network T is a minimum length network, span-
ning a given set of nodes N in space with edges whose gradients are all no more than an
upper bound m. The nodes in T but not in N are referred to as Steiner points. Such networks
occur in the underground mining industry where the typical maximal gradient is about 1:7
(≈ 0.14). Because of the gradient constraint the lengths of edges in T are measured by a
special metric, called the gradient metric. An edge in T is labelled as a b-edge, or an m-edge,
or an f-edge if the gradient between its endpoints is greater than, or equal to, or less than m
respectively. The set of edge labels at a Steiner point is called its labelling. A Steiner point s
with a given labelling is called labelled minimal if T cannot be shortened by a label-preserv-
ing perturbation of s. Furthermore, s is called locally minimal if T cannot be shortened by any
perturbation of s even if its labelling is not preserved. In this paper we study the properties of
labelled minimal Steiner points, as well as the necessary and sufficient conditions for Steiner
points to be locally minimal. It is shown that, with the exception of one labelling, a labelled
minimal Steiner point is necessarily unique with respect to its adjacent nodes, and that the
locally minimal Steiner point is always unique, even though the gradient metric is not strictly
convex.

Keywords Minimum networks · Gradient constrained · Steiner trees · Locally minimal

1 Introduction

A gradient-constrained Steiner network is a network interconnecting a given set of nodes N
in 3-space, where each edge in the network is embedded so as to have gradient no greater
than a given upper bound m. The given nodes in N are referred to as terminals while all
other nodes (of degree 3 or more) of the network are referred to as Steiner points [9]. Such
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networks have many applications, particularly in the underground mining industry where
the maximum gradient is generally about 1:7 (≈0.14) [5]. A gradient-constrained minimum
Steiner network T is a gradient-constrained network whose total length is minimum for the
given terminal set N . When searching for such a minimum network, only m and the posi-
tions of the terminals are fixed; the topology (underlying graph structure) of the network and
positions of the edges and Steiner points are allowed to vary. In the context of underground
mining, finding such a network corresponds to minimising the substantial infrastructure costs
for the ramps and drives providing access to a given set of ore bodies [3,6].

Let x p, yp, z p denote the Cartesian coordinates of a point p in Euclidean space. By the
gradient of an edge pq we mean the absolute value of the slope from p = (x p, yp, z p) to
q = (xq , yq , zq), which is denoted by g(pq). That is,

g(pq)
def
==

|zq − z p|√
(xq − x p)2 + (yq − yp)2

.

Using this notation, T can be regarded as a shortest network in a gradient metric space where
the gradient metric, a combination of the Euclidean metric and the vertical metric, is defined
as follows:

|pq|g =
{√

(x p−xq)2+(yp−yq)2+(z p−zq)2 (Euclidean metric) if g(pq) ≤ m,

(
√

1+m−2)|z p−zq | (vertical metric) if g(pq) ≥ m.
(1)

(As usual, | · | is used to denote the Euclidean metric.) In gradient metric space every edge pq
in T can be represented as a straight line segment. However, if the gradient of pq is greater
than m, then it is straight in the gradient metric space but will be represented as a bent edge
prq in Euclidean space, where pr, rq are straight line segments with maximum gradient m.
We refer to r as a corner point on the bent edge. An edge pq is called an f-edge, m-edge or
b-edge if pq is labelled ‘f’ (g(pq) < m), ‘m’ (g(pq) = m) or ‘b’ (g(pq) > m), respectively.
Denote the horizontal plane through a Steiner point s by Hs . For simplicity, a point or an
edge will be said to be above (or below) s if it is above (or below) Hs . A Steiner point is
degenerate if it is coincident with an adjacent vertex.

Let a, b, c be three given vertices in a gradient-constrained network. Suppose a degree
3 (non-degenerate) Steiner point s adjacent to a, b, c has one incident edge as above s and
the other two edges bs, cs below s. Let Las,Lbs,Lcs denote the respective labels of these
edges. Then we say the labelling of s is (Las/LbsLcs). Similarly, if as and bs are above
s and cs is below s, then the labelling is (LasLbs/Lcs). If s is of degree 4 with adjacent
vertices a, b, c, d and as and ds lie above s while bs, cs are below s, then the labelling of s
is denoted by (LasLds/LbsLcs).

The focus of our study in paper [4] was on the labellings that can occur in a gradient-con-
strained minimum network T , and we proved the following fundamental facts:

Proposition 1.1 (1) The degree of a Steiner point s in a gradient-constrained minimum net-
work T is either three or four.
(2) Up to symmetry there are five (non-degenerate) feasibly optimal labellings (f/ff), (m/ff),
(m/mf), (m/mm) and (b/mm) if s is of degree 3 and m < 1.
(3) If s is of degree 4 and if m < 0.38, then there is only one feasibly optimal labelling
(mm/mm). Moreover, two edges, say as and bs, lie in a vertical plane, and so do the other
two edges cs, ds.

Constructing a gradient-constrained minimum Steiner network is a difficult global opti-
misation problem. An important step in the development of efficient methods for solving the
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global problem is to understand and and exploit properties of local minima. Indeed, this is a
constant theme throughout geometric Steiner network theory. Hence, it is useful to identify a
number of different types of minimality for the gradient-constrained problem, ranging from
the most local to the global:

(1) Labelled minimal: minimal for a given topology and a given set of labellings on the
edges. This means that no perturbation of a Steiner point that preserves the labelling of
its incident edges can decrease the length of the network. Here we only need to consider
labellings which induce feasibly optimal labellings at the Steiner points (i.e. labellings
given in Proposition 1.1).

(2a) Locally minimal (with respect to 1-point pertubations): minimal for a given topology,
with respect to any perturbation on a Steiner point (including perturbations that change
edge labels).

(2b) Locally minimal (with respect to all pertubations): minimal for a given topology, with
respect to all perturbations on Steiner points including those perturbations that simul-
taneously perturb more than one Steiner point (note that this is the usual definition of
local minimality in the Euclidean Steiner problem, where (2a) and (2b) are equivalent).

(3) Global minimum: minimum for all possible topologies and all perturbations of Steiner
points.

The aim of our previous paper [4] was to understand the properties of labelled minimal
Steiner networks, and to determine the feasibly optimal labellings that need to be considered.
In this present paper we investigate the relationship between labelled minimality and the
local minimality of Case (2a). A future paper (in preparation) will study the local minimality
of Case (2b) in terms of 1-point local minimality (Case (2a)).

By Proposition 1.1(3), if there exists a Steiner point s of degree 4 (and m < 0.38), then
it is easily computed in terms of the coordinates of the adjacent vertices. Hence, for the
remainder of this paper we ignore degree-4 Steiner points and only discuss degree-3 Steiner
points. Moreover, we assume m < 1 so only the above five labellings in Proposition 1.1(2)
are considered.

The definitions of labelled and local minimality above can also be applied to Steiner
points. A Steiner point s with a given labelling is called labelled minimal if T cannot be
shortened by label-preserving perturbations of s. Furthermore, s is called locally minimal if
T cannot be shortened by any perturbation of s no matter whether its labelling is preserved or
not. Although the gradient metric is not strictly convex, we will see that the labelled minimal
Steiner point is unique. It follows that the locally minimal Steiner point is also unique since
a locally minimal Steiner point must be labelled minimal. Clearly, a locally minimal Steiner
point must be labelled minimal, and hence, can be selected from labelled minimal Steiner
points. In this paper we study the properties of labelled minimal Steiner points, and the nec-
essary and sufficient conditions for such points to be locally minimal. In particular, we show
that some kinds of labelled minimal Steiner points appear to be algebraically unsolvable, i.e.
cannot be determined by formulae with radicals.

2 Fundamentals

Throughout the rest of this paper s, with or without subscripts, denotes a degree 3 Steiner
point with adjacent terminals a, b, c and T is the gradient-constrained tree consisting of the
incident edges of s. Moreover, we assume m < 1 as required by Proposition 1.1(2). There
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Fig. 1 Intersections of two cones

are two fundamental techniques required for studying the necessary and sufficient conditions
for Steiner points to be labelled minimal or locally minimal.

2.1 Cone argument

Suppose p is a point. Let Cp denote the right circular cone whose vertex is p and the gradient
of whose generating lines is m, the maximum permitted gradient. Such cones play a central
role in determining Steiner points. Suppose a, b are distinct points, and Ca,Cb are two such
cones. If g(ab) > m then Ca ∩Cb is an ellipse [4]. In an unpublished research note [10] one
of the authors has made an exhaustive study on conic sections produced by two right circular
cones. Below are some results cited from the note and used in this paper. A sketch of the
proof is given.

Theorem 2.1 Suppose Ca,Cb are two right circular cones whose generating lines have the
same gradient m. Without loss of generality assume a = (u, 0, h), b = (−u, 0,−h), u ≥
0, h ≥ 0.

(1) The intersection Eab (or simply E) ofCa,Cb is either an ellipse or a hyperbola depending
on whether g(ab) > m or g(ab) < m, respectively. When g(ab) = m, Eab degenerates
into a straight line through a, b.

(2) The ellipse or hyperbola has two extreme points v = (h/m, 0, mu), v∗ = (−h/m,

0,−mu), referred to as its vertices.
(3) Let s ∈ E. If E is an ellipse then |as| + |bs| = 2za/ sin α is constant, where α =

arctan(m). If E is a hyperbola then |as|+ |bs| achieves its minimum when s = v (or v∗).
(4) For any point s ∈ E let tab be the (upward) tangent vector at s. Then the gradient of tab

is less than m. Moreover, if E is an ellipse, then � (
−→sa , tab) ≤ 90◦, � (

−→
sb,−tab) ≤ 90◦,

and equality holds if and only if s = v or s = v∗. If E is a hyperbola and s lies on the

upper branch, then � (
−→sa ,−tab) ≤ 90◦, � (

−→
sb,−tab) ≤ 90◦, and the equality holds if

and only if s = v. The results are similar if s lies on the lower branch.

Proof (Sketch) Let s = (xs, ys, zs) be a point on the intersection of the right circular cones
Ca and Cb (Fig. 1). Then the two cones are determined by

(xs − u)2 + y2
s = (zs − h)2

m2 , (xs + u)2 + y2
s = (zs + h)2

m2 . (2)
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Subtracting the first equation from the second, we obtain the equation for the intersection E:

zs

xs
= m2 u

h
, i.e. zsh = m2uxs . (3)

This equation implies that E lies on a plane P̃ , which is through the y-axis and between a
and b. Hence, E is an ellipse or a hyperbola. By standard calculus operations it is not hard to
prove the other statements in the theorem. ��
Remark 2.1 In general, if g(as) = m we define P(as) to be the tangent plane containing
as and tangent to Ca . Similarly, we define P(bs). Then, in Theorem 2.1 the intersection
P(as) ∩ P(bs) of the two tangent planes determines the vector tab.

2.2 Variational argument in gradient metric space

The variational method [7] has proved to be a powerful tool in the study of the Euclidean
Steiner tree problem. We can generalise it to the gradient-constrained Steiner tree problem.
Note that the gradient metric defined by Formula (1) is a combination of the Euclidean metric
and a special metric (referred to as the vertical metric) for edges whose gradients are ≤ m
and ≥ m, respectively. Note also that the vertical metric is convex but not strictly convex
and, consequently, so is the gradient metric. Suppose e = ps is an edge in gradient metric
space. Let Le = |pq|g be the length of e, and LT = ∑

e∈T Le be the tree length of T . Then
it is easy to check that the following lemmas hold from the definition of the gradient metric:

Lemma 2.2 [4] Suppose e = ps is an edge and s is perturbed to s′ in direction v with p
being fixed. Let L̇e(v)g be the directional derivative of Le in gradient metric space.

(1) If g(ps) < m then L̇e(v)g = − cos � pss′.
(2) If g(ps) > m then L̇e(v)g = −√

1 + m−2 cos � zss′ where z is a point on the vertical
line through s such that � psz ≤ 90◦,

(3) If g(ps) = m then L̇e(v)g = − cos � pss′ or = −√
1 + m−2 cos � zss′ depending on

whether g(ps′) ≤ m or g(ps′) ≥ m, respectively.

Remark 2.2 From Lemma (2.2) we can see that, as in Euclidean space [7], the variation of
an edge in the gradient metric space is determined only by the angle at which one perturbs
its endpoints, and is independent of the edge’s length.

Lemma 2.3 Suppose two straight edges as, bs in T meet at an angle less than 90◦. T is not
minimal if as is an f-edge, or if as is an m-edge and lies on the same side of Hs as bs.

Proof Let s be perturbed along sb to s′. Then the lemma is trivial if as is an f-edge or if as
is an m-edge and as′ is an f-edge. If as is an m-edge and as′ is an m-edge or b-edge then
L̇as < 0 since the vertical distance between the endpoints of as is decreasing. ��

We will omit the subscript g in L̇e(v)g or L̇T (v)g if no confusion is caused. For construct-
ing a coordinate system in gradient metric space, it is required to choose three non-coplanar
vectors as axes. Our usual strategy in later parts of this paper will be to define the new axes
according to the labelling of s based on the following set of principles:

• The origin is set at s.
• For each pair of edges incident with s, say as and bs we choose a corresponding axis as

follows:

a If as and bs are both m-edges we choose an axis along the line P(as) ∩ P(bs);
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b If only one edge, say as, is an m-edge we choose an arbitrary axis lying on the tangent
plane P(as);

c If neither edge is an m-edge then the corresponding axis is chosen arbitrarily.

• The above choices are made in such a way that the three axes are not co-planar.

Clearly such axes can always be constructed, unless we have three m-edges lying in a
vertical plane. The unit vectors in the positive directions of the three axes will be denoted by
x, y, z, respectively. Note that by such a choice of axes, the gradient metric space is partitioned
into eight octants, where the tangent planes of the m-edges are involved in this partitioning,
This implies that all perturbations of one of the incident edges into a single octant involve
only one metric, either the Euclidean or the vertical metric. Hence, the following theorem
and corollary hold.

Theorem 2.4 Suppose e = ps with p fixed and s being perturbed in direction v. Suppose the
axes are chosen as stated above. Let v be decomposed as v = vx + vy + vz where vx , vy, vz

are the projections of v on the x-axis, y–axis and z-axis respectively. Then

dLe(v) = L̇e(vx )dx + L̇e(vy)dy + L̇e(vz)dz. (4)

Corollary 2.5 The point s, in the previous theorem, is locally minimal if and only if L̇T (±x) ≥
0, L̇T (±y) ≥ 0, L̇T (±z) ≥ 0.

A perturbation of s with respect to e (or to T ) is called reversible if L̇e(v) = −L̇e(−v) [or
L̇T (v) = −L̇T (−v), respectively]. The gradient metric is not differentiable when the gradi-
ent is m, consequently not all perturbations are reversible. The following theorem trivially
holds.

Theorem 2.6 Suppose e = ps with p fixed and s being a Steiner point. If e is an f-edge or
a b-edge, then the label of e is preserved under any perturbation of s, and the perturbation
is reversible with respect to e. However, if e is an m-edge and if v does not lie in P(ps) then
the perturbation is not reversible.

It follows from this theorem that if s has incident m-edges then to show s is locally min-
imal we need to consider the perturbations of s in both positive and negative directions of
v.

3 Labelled minimal Steiner points

From now on we assume that T has a degree 3 (non-degenerate) labelled minimal Steiner
point s with one edge as above s and two edges bs, cs below s. We assume that s has one
of the five feasibly optimal labellings listed in Proposition 1.1(2). The geometric properties
of labelled minimal s were briefly discussed in Ref. [4]. The objectives of this paper are to
study the following two problems:

(P1) Find the simplest system of equations that determines s.
Ideally, the system should consist of 3 independent equations. If s has k (0 ≤ k ≤ 3)

incident m-edges, then the gradient constraints of the k m-edges form part of the system.
The remaining (3 − k) equations in the system can be determined by the variational
argument. Where possible, we will also determine the degree of the system and identify
the minimum solution if the system has more than one real solution.
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(P2) Decide whether the labelled minimal Steiner point s is also locally minimal, and, if not,
find the direction in which to perturb this node so as to reduce the tree length.
In this study we assume that the labelled minimal s satisfies Lemma 2.3, otherwise s
cannot be locally minimal since we can simply move s as described in the lemma to
shorten T . Moreover, if s does not have an incident m-edge, then s being labelled min-
imal implies s is also locally minimal by Theorem 2.6. On the other hand, by Corollary
2.5 if there are m-edges then we need consider both positive and negative directions for
perturbations along these edges. Later we will see that if s has incident m-edges and
is labelled minimal but not locally minimal, then any length-reducing perturbation of
s results in a change of labelling that transforms at least one m-edge into an f-edge or
a b-edge.

We study the two problems labelling by labelling. Our main focus is on labellings (m/mm)
as case is the most complicated.

3.1 Labelling (b/mm)

As discussed at the beginning of this section, two of the equations for determining s are the
gradient constraints g(sb) = g(sc) = m. That is, s lies on the upper branch of the hyperbola
Ebc = Cb ∩ Cc. By Lemma (2.1)(3) s must be the vertex v of the hyperbola. It follows that
s lies in the vertical plane through bc and the projections of b, s, c on a horizontal plane lie
in a straight line. Thus, the system determining s is

g(sb) = g(sc) = m,
ys − yc

xs − xc
= yb − yc

xb − xc
. (5)

Note that as shown in Formula (3) after eliminating a variable, the 2 equations g(sb) =
g(sc) = m become a linear equation. Therefore, the system (5) is linear and there is only one
solution. The uniqueness is trivial from the geometric point of view: the vertex of a hyperbola
(in a branch) is unique.

Theorem 3.1 (1) The labelled minimal point s for the labelling (b/mm) is the vertex v of
Ebc, which is uniquely determined by the linear system of Equation (5).
(2) s is locally minimal as well as labelled minimal.

Proof The first statement has been proved above. To prove the second statement we re-set

the axes such that s is the origin and that y = −−→
sb and z = −−→sc are the y-axis and z-axis,

respectively. The intersection of the tangent planes P(bs) and P(cs) is a horizontal line
and is taken as the x-axis (its positive direction can be chosen arbitrarily). The observations
below follow from the definition of the gradient metric:

a L̇as(±x) = 0 and L̇bs+cs(±x) > 0. Hence L̇T (±x) > 0.

b L̇as+cs(y) = 0 and L̇bs(y) > 0. Hence L̇T (y) > 0.

c L̇as+bs(−y) = 0 and, since m < 1 we have � bsc > 90◦, so L̇cs(−y) > 0. Hence
L̇T (−y) > 0.

By symmetry, we also have L̇T (±z) > 0. Thus by Corollary 2.5 the second statement holds.
��

3.2 Labelling (m/mm)

Clearly, s is determined by the system of equations

g(as) = g(bs) = g(cs) = m. (6)
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Fig. 2 Intersection of three cones

It follows that s is an intersection of three cones, and hence an intersection of three conics:
two ellipses and one hyperbola. Figure 2 is a 3D-plot of the intersection of the three cones
[to make the picture clear, the plot is for the labelling (mm/m), not for (m/mm)]. Note that
g(b, c) < m, since otherwise s collapses into b or c, contradicting the assumption that s is
non-degenerate. Note also that g(a, b) ≥ m and g(a, c) ≥ m due to the labelling. Since the
hyperbola Ebc = Cb ∩ Cc and the cone Ca are both convex, they meet at no more than two
points, that is, the above system of equations has at most two real solutions.

The analytical argument is as follows. As in Case (b/mm), after eliminating a variable,
g(bs) = g(cs) = m becomes a linear equation. Combining these linear equations with the
equation g(as) = m then results in a quadratic equation. Hence the system (6) is of degree
2 and has at most two real different solutions.

Theorem 3.2 The labelled minimal Steiner point s for labelling (m/mm) is determined by
the quadratic system of eq. 6, which has at most two real different solutions s1, s2, lying on
the hyperbola Ebc. If zs1 = zs2 , then both points are labelled minimal, otherwise the one with
the smaller z-coordinate is the labelled minimal Steiner point.

Proof The first part has been proved above. Let T1, T2 be the trees with Steiner points s1, s2,
respectively. Because

|as1|g + |bs1|g = |as2|g + |bs2|g and |as1|g + |cs1|g = |as2|g + |cs2|g,

2(|T1|g − |T2|g) = (|bs1|g + |cs1|g) − (|as2|g + |cs2|g) ≤ 0 if and only if zs1 ≤ zs2 .

This proves the second part of the theorem. ��
Theorem 3.3 Let s be the labelled minimal Steiner point for (m/mm). Let v be the vertex of
the hyperbola Ebc.

(1) If v lies strictly inside Ca, then s is not locally minimal.
(2) If v lies on the surface of Ca (i.e. s = v), then s is locally minimal.
(3) If v lies strictly outside Ca, then s may or may not be locally minimal, depending on the

position of s.

The point s is necessarily unique except in the Case (1), in which however the resulting
locally minimal Steiner point is unique.
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(a) (b)

(d) (e)

(c)

Fig. 3 Labelled Steiner points for labelling m/mm

Proof As g(ab) ≥ m and g(ac) ≥ m, either both inequalities are strict or exactly one of
them is an equality. Using this criterion, Cases (2) and (3) discussed below will be further
divided into subcases, referred to as type A and type B, respectively.

(1) If v lies strictly inside Ca then g(ab) > m, g(ac) > m, and (using the notation of
Theorem 3.2) s1 �= s2. This is illustrated in Fig. 3a. Let Tv be the tree with v as its
Steiner point. Then, as in the proof of Theorem 3.2, we have LTv < LT1 , LTv < LT2 .

Hence, at least one of s1, s2 is labelled minimal but neither point is locally minimal.
In this case v is the locally minimal Steiner point for T and has labelling (b/mm).

(2A) If s = v lies on the surface of Ca and if g(ab) > m, g(ac) > m, then s = s1 = v and
s1 �= s2 as shown in Fig. 3b. An m-edge is a critical b-edge and therefore the labelling
(m/mm) is a critical case of the labelling (b/mm). By similar arguments to those in
the proof of Theorem 3.2 it follows that T1 cannot be shortened by moving s in any
direction, and s is locally minimal.

(2B) Suppose s = v lies on the surface of Ca but one of g(ab) and g(ac), say g(ac), equals
m. In this case, the ellipse Eac degenerates to the line through a and c and s1 = s2 = v

lies on the line segment ac (Fig. 3d). Note that v lying on the surface of Ca forces b to
lie in the vertical plane through ac, and note that v is also the vertex of the ellipse Eab.
Hence, as proved in Ref. [2], s = v is locally minimal as well as labelled minimal.

(3A) If v lies outside Ca and if g(ab) > m, g(ac) > m, then s1 �= s2 and both lie on the
upper branch of the hyperbola Ebc on one side of v as shown in Fig. 3c. In this case
s = s1 is labelled minimal but is not necessarily locally minimal, depending on the
position of s.
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Fig. 4 Perturbation of s along tangents

(3B) Suppose v lies strictly outside Ca and either g(ab) or g(ac), say g(ac), is m. As in
Case (2B) the ellipse Eac degenerates to a line through a and c and the upper branch
of the hyperbola Ebc just touches Ca at a point on ac, which is the labelled mini-
mal point s = s1 = s2(Fig. 3e). Let s move downwards along the tangent tab of the

ellipse Eab as shown in the figure. Then � (
−→
sb, tab) < 90◦ by Theorem 2.1. Hence,

L̇as+sc(tab) = 0, L̇bs(tab) = − cos � (
−→
sb, tab) < 0. It follows that L̇T < 0 and s is

not locally minimal.
��

Remark 3.1 In order to visualise the different cases in Fig. 3 it is helpful to consider what
happens as a changes position relative to b and c. Beginning with g(ab) > m and g(ac) > m,
if a (and hence cone Ca) moves horizontally away from bc, then Fig. 3a changes into Fig. 3b
and then into Fig. 3c. When g(ac) = m, if a, together with cone Ca , rotates around a vertical
line through c, then Fig. 3d changes into Fig. 3e.

In Case (3A) of the above theorem, let x = tab be the downward tangent vector of the
ellipse Eab at s. Similarly, define the downward tangent vector y = tac of the ellipse Eac and
the downward tangent vector z = tbc of the hyperbola Ebc (Fig. 4). The 3 tangent vectors
are non-coplanar, and define a set of axes which allow us to apply Theorem 2.4.

Theorem 3.4 Let axes be given by the above downward tangent vectors. Then s = s1 is not
locally minimal if and only if at least one of L̇T (x) < 0, L̇T (y) < 0 and L̇T (z) < 0 holds.

Proof By Theorem 2.4 we only need to prove that the variation is positive when s moves
in the negative axis directions. First note that x is not horizontal. When s moves in the
upward direction −x, |as| + |bs| is constant but |cs| increases. Hence L̇T (−x) > 0. Sim-
ilarly L̇T (−y) > 0. If s moves in the upward direction −z, then both arguments hold:
|as| + |bs| is constant with |cs| increasing and |as| + |cs| is constant with |bs| increasing.
Hence, L̇T (−z) > 0. ��

Let s be perturbed to s′ along one of the axes such that |ss′| is arbitrarily small. The above
discussion is summarized in Table 1 in which “≥ 0?" indicates that that the inequality may
or may not hold (depending on the position of s).

The labelling change for the perturbation in direction x is particularly interesting: the
resulting labelling (f/mm) is an infeasible labelling. In that case s moves downwards from s′
continuing to reduce the tree length until s once again reaches the surface of Ca . As a result
the possible labelling for local minimality is (m/ff).
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Table 1 Perturbations of s with labelling (m/mm)

x y z −x −y −z

Las′ m m f m m b

Lbs′ m f m m b m

Lcs′ f m m b m m

L̇T ≥0? ≥0? ≥0? >0 >0 >0

Theorem 3.5 The Steiner point s is locally minimal if and only if L̇T (
−→as ) ≥ 0.

Proof Note that all three angles � (
−→as , tab), � (

−→as , tac)� (
−→as , tbc) are less than 90◦. Hence−→as , lying in the first octant, can be decomposed into a sum of its projections on the three

tangent vectors as argued in Theorem 2.4. Therefore,

s is locally minimal ⇔ ¬ (
(L̇T (x) < 0) ∪ (L̇T (y) < 0) ∪ (L̇T (z) < 0)

)

⇔ (L̇T (x) ≥ 0) ∩ (L̇T (y) ≥ 0) ∩ (L̇T (z) ≥ 0)

⇔ L̇T (
−→as ) ≥ 0.

��
3.3 Labelling (m/mf)

To determine s, first we have two equations g(as) = g(sb) = m. It follows g(ab) ≥ m. By
the variational argument the third condition for determining s is that cs should be perpendic-
ular to the ellipse E = Eab (or its degeneration ab) at s (see Fig. 1a). Let tab be the tangent
vector at s. Then, the equations determining s are

g(as) = g(sb) = m, � (
−→sc , tab) = 90◦. (7)

We claim that this system is of degree 4. The problem of finding s is equivalent to the problem
of finding a normal line from a point in space to an ellipse on a plane. It has been shown
that this problem requires solving a degree 4 polynomial [1]. Furthermore, we claim that the
system has only one real solution. The reason is that the ellipse E is strictly convex and, by
the labelling, c must be outside Ca and Cb. Therefore, the labelled minimal Steiner point s
is unique and the following theorem holds.

Theorem 3.6 The labelled minimal Steiner point s for labelling (m/mf) is determined by the
quartic system of Equation (7), which has only one real solution.

Theorem 3.7 Let s be the labelled minimal Steiner point for (m/mf).

(1) If g(ab) = m, then s is not locally minimal.
(2) If g(ab) > m, then s is locally minimal if and only if L̇T (x) ≥ 0 where x = −−→sa.

Proof (1) If g(ab) = m, then s lies on ab and sc⊥ab. If s is perturbed in direction −→sc then
L̇as+bs(

−→sc ) = 0 and L̇sc(
−→sc ) < 0. Hence, L̇T (

−→sc ) < 0 and s is not locally minimal.

(2) Let y = −−→
sb , z = tab and apply Corollary 2.5. It is easy to verify that L̇T (−x) > 0

and L̇T (−y) > 0. Since tab is tangent to Eab and the ellipse Eab is convex, it follows that
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Table 2 Perturbations of s with labelling (m/mf)

x y −x −y ±z

Las′ m f m b f

Lbs′ f m b m f

Lcs′ f f f f f

L̇T ≥0? ≥0∗ >0 >0 ≥0

L̇T (±z) = 0 and L̈T (±z) > 0. Hence, T cannot be shortened by moving s in the tangent
direction z. Now note that � (y,

−→sc ) > � (x,
−→sc ) implies

L̇T (y) = 1 − cos � (y,
−→sa) − cos � (y,

−→sc )

= 1 − cos � (x,
−→
sb) − cos � (y,

−→sc )

> 1 − cos � (x,
−→
sb) − cos � (x,

−→sc ) = L̇T (x).

Hence, L̇T (x) > 0 implies L̇T (y) > 0 and the statement is proved. ��
Let s be perturbed to s′ such that |ss′| is arbitrarily small. The above discussion is sum-

marized in Table 2 in which “L̇T (x) ≤ 0?” indicates that the inequality may or may not hold
and “L̇T (y) ≥ 0∗” indicates that it holds under the condition L̇T (x) ≥ 0.

3.4 Labelling (m/ff)

Since s, as a labelled minimal Steiner point, is constrained on cone Ca , the first equation
determining s is g(as) = m. Let x = −−→sa and let y be the vector tangent to the circle
Ca ∩ Hs , which is perpendicular to x. By the variational argument, s is determined by the
following equations (from Ref. [4, Theorem 7]:

fx = g(sa) = m,

ft = cos � (
−→
sb, y) + cos � (

−→sc , y) = 0, (8)

fn = 1 − cos � (
−→
sb, x) − cos � (

−→sc , x) = 0.

In terms of vectors, ft , fn can be re-written as

ft =
−→
sb · y
|sb| +

−→sc · y
|sc| = 0,

fn =
−→
sb · x

|sb| |x| +
−→sc · x
|sc| |x| − 1 = 0.

Because Ca is a convex surface, there is only one labelled minimal Steiner point s if it exists.
After eliminating sz using fx and removing radicals by squaring, ft is transformed into a
degree 4 polynomial in sx , sy, and fn a degree 8 polynomial. Hence, we have the following
theorem.

Theorem 3.8 The labelled minimal Steiner point s for labelling (m/ff) is determined by the
degree 8 system of eq. 8, which has a unique real solution.
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Table 3 Perturbations of s with labelling (m/ff)

±x ±y −z z

Las′ m m b f

Lbs′ f f f f

Lcs′ f f f f

L̇T = 0 = 0 >0 ≥0?

Table 4 Labelled minimal Steiner points

Labelling Equations Degree Number

(b/mm) Equations (5) linear 1

(m/mm) Equations (6) quadratic 2

(m/mf) Equations (7) quartic 1

(m/ff) Equations (8) degree 8 1

(f/ff) Equations (9) quadratic 1

We would expect this system of equations to generally be unsolvable by radicals. Our
analysis of examples of such labelled minimal Steiner points appears to confirm this conjec-
ture.

Let −z be the projection of −→sa onto the horizontal plane Hs .

Theorem 3.9 The labelled minimal Steiner point s for (m/ff) is locally minimal if and only
if L̇T (z) ≥ 0.

Proof Let the three non-coplanar vectors x, y, z be chosen as above. Since s is labelled mini-
mal, then, by a similar argument to that in Theorem 3.7(2) we have L̇T (±x) = 0, L̈T (±x) >

0, L̇T (±y) = 0, L̈T (±y) > 0. That is, s is minimised with respect to perturbations in x, y.
If s is perturbed in −z, then L̇as(−z) = 0 and L̇bs+cs(−z) > 0. Thus, L̇T (−z) > 0 and by
Corollary 2.5 the theorem holds ��

It is easily checked that if, alternatively, we choose z to be nP(as), the outward unit normal
vector to Ca at s, then Theorem 3.9 still applies. For either definition of z, the effect of
perturbing s along one of the axes to s′ is summarized in Table 3 in which “≤0?" indicates
that the inequality may or may not hold.

Another useful geometric condition for local minimality is the following.

Theorem 3.10 Let P be the plane containing �abc, and suppose P intersects Ca only at
a. Then s is not locally minimal.

Proof If s is perturbed towards its projection onto P then all edges incident with s become
f-edges. Hence the pertubation behaves like a Euclidean perturbation and reduces |T |. ��
3.5 Labelling (f/ff)

Since the label of an f-edge is preserved under any perturbation (Theorem 2.6), in this case
the vertical metric is not active. Hence, the problem becomes a Euclidean Steiner problem
and the following theorem holds [8].
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Fig. 5 Changes of labellings if the labelled minimal s is not locally minimal

Theorem 3.11 The labelled minimal Steiner point s for labelling (f/ff) is determined by

� asb = � bsc = � csa = 120◦. (9)

This system of equations is quadratic and has a unique real solution s. The Steiner point s is
locally minimal as well as labelled minimal.

4 Concluding remarks

1. The following table summarizes the answer to Problem (P1) raised at the beginning of the
last section. The table shows the system of equations determining the labelled minimal
Steiner point s, the degree of the system, and the maximum number of real solutions.

2. If the labelled minimal Steiner point s is not locally minimal, then the length of T can be
reduced by perturbing s in a certain direction v and changing the labelling of s. For each
such case, Fig. 5 shows a suitable direction v and the resulting change in labelling.
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